KMS Technical Documentation

KMS Technologies focuses on electromagnetic (EM) systems such as Magnetotelluric instruments, Controlled Source EM (CSEM) (in time and frequency domain) systems and NMR laboratory instruments. NEW hardware are land electromagnetic transmitters (grounded dipoles and loop) KMS-5100 and the shallow borehole system KMS-888.

The following page contains brochures for KMS Technologies' products and services that provide technical specifications. Please click on the links below in order to download a brochure in PDF format. The Products and Services tabs allows you to see the products in a better overall context.

Under EM hardware we are build a land, marine, borehole ARRAY system.   

>>> Publications with KMS hardware

Company overview and general information

  1. Company overview.pdf
  2. KMS brochure - company & product overview
  3. General terms and conditions
  4. KMS-KJT rental policy
  1. Reference material KMS case histories (geothermal focus)

KMS News:

  1. KMS-831 32-bit sub-acqusition controller
  2. KMS 200 updates, update 2.0
  3. Resersoir Monitoring

Hardware: Acquisition units, transmitters, most common sensors

Acquisition units:

  1. Electromagnetic/micro-seismic data acquisition unit: KMS-820  Wifi-chip
    KMS-820 marketing postcard:KMS-820 marketing postcard.pdf
  2. NEW.. KMS 831- digital interface for 32 bit remote acquisition  NEWS item
  3. KMS-820 MINI- low cost MT system (data sheet)
  4. .
  5. KMS-870 MARINE broadband Seismic/EM deep water node
  6. KMS-888 shallow borehole system
  7. ..
  8. MR-ML™: mud logging NMR instrument, MR-ML.pdf

Transmitters:

  1. KMS-500 CSEM Transmitter (transition zone): KMS-500.pdf
  2. KMS-5100 Land transmitter (100/150/200 KVA)

Sensors:

  1. KMS-029 3 component fluxgate sensor to 180 Hz - 32 bit
  2. Land MT Magnetometer: KMS-LIC120.pdf (LEMI-120)
  3. Land AMT magnetometer LEMI-118: LEMI-118.pdf
  4. AMT/groundwater applications magnetometer (0.4 to 10 kHz) (LEMI 145)
  5. Marine Magnetometer: KMS-MIC121.pdf  (as LEMI-121
  6. Super Broad Band coil LEMI-152
  7. Multi-turn air loop S20, S30 etc.
  8. KMS-888 shallow borehole system

Customized geophysical systems- overview

  1. Wide-band Magnetotelluric (MT) system
  2. Array Data Acquisition System
  3. KMS-888 shallow borehole system
  4. NEW... KMS-820 MINI- low cost MT system (data sheet)
  5. KMS system overview (postcard)

System accessories (batteries, cables etc.)

  1. LOW WEIGHT Field batteries (Lithium Iron) KMS-410
  2. Cable specifications: KMS-100 KMS-105 KMS-110 KMS-115 KMS-186
  3. Metal cable reel KMS-155
  4. Long range wireless adapter: KMS-300
  5. KMS 820 Wifi-chip set
  6. MT spare kit for KMS 820
  7. Laptop / tablet controllers
  8. Transportation cases

Services & training

  1. 3D MT and CSEM modeling and inversion services: description
  2. Reservoir monitoring: developing a pilot study
  3. Training course: Reservoir Characterization with Borehole Geophysics..brochure
  4. Training course: Electrical Method for Hydrocarbon Exploration ..brochure
  5. Training course: Reservoir Monitoring with Electromagnetics/Microseismics ..brochure

Software

  1. LotemSuite: 1-Dimensional Lotem (CSEM) Modeling:
  2. Spectral Plower: SPower.pdf  
  3. MT/EM processing software fro KMS-820 array system:KMS-200 KMS-200 news item, news item 2
  4. IX1D marine/land EM sounding inversion software
  5. EM QaQc data processing software: EM QaQc.pdf
  6. 3D MT/CSEM modeling/inversion: ModEM (Egbert)
  7. 3D EM modeling for land/marine/borehole MAXANIS

LEMI sensors

  1. LEMI sensors: LEMI sensors.pdf
  2. LEMI sensors: LEMI sensors marketing postcard.pdf
  3. Fluxgate magnetometer LEMI-011: LEMI-011.pdf
  4. Fluxgate magnetometer LEMI-017: LEMI-017.pdf
  5. Fluxgate magnetometer LEMI-018: LEMI-018.pdf
  6. Fluxgate magnetometer LEMI-019: LEMI-019.pdf
  7. Fluxgate magnetometer LEMI-020: LEMI-020.pdf
  8. Fluxgate magnetometer LEMI-022: LEMI-022.pdf
  9. Fluxgate magnetometer LEMI-024: LEMI-024.pdf
  10. Fluxgate magnetometer LEMI-025: LEMI-025.pdf
  11. Fluxgate magnetometer LEMI-026: LEMI-026.pdf FOR DRONES
  12. Fluxgate magnetometer LEMI-029: LEMI-029.pdf
  13. Magnetotelluric station LEMI-030: LEMI-030.pdf
  14. Induction coil magnetometer LEMI-118: LEMI-118.pdf
  15. Induction coil magnetometer LEMI-120: LEMI-120.pdf
  16. Induction coil magnetometer LEMI-121: LEMI-121.pdf
  17. Induction coil magnetometer LEMI-123: LEMI-123.pd
  18. Induction coil magnetometer (0.4 to 10 kHz) (LEMI 145)
  19. Super Broad Band ibduction coil magnetometer LEMI-152
  20. Autonomous vector magnetometer for seafloor application: LEMI-301.pdf
  21. Long-period magnetotelluric station LEMI-417: LEMI-417.pdf
  22. Wide-band magnetotelluric station LEMI-418: LEMI-418.pdf
  23. Ultra-low noise non-polarizable electrodes: LEMI-701

Publications where KMS instruments are used

General system design/Reservoir Monitoring: 

  1. Strack, K.M., and A.A. Aziz, 2012, Full Field Array ElectroMagnetics: Advanced EM from the surface to the borehole, exploration to reservoir monitoring, in Lane, R. (Editor), Natural Fields EM Forum 2012, Geoscience Australia Record 2012/04, 176-198.
  2. Strack, K.M., 2015, Reservoir monitoring using electromagnetics/microseismics:
    Experience leading to a 200 channel system
    , Schmucker-Weidelt Kolloqium.
  3. Hanstein, T., Jonke, P., and K.M. Strack, 2015, New applications with KMS-820, Schmucker-Weidelt Kolloqium.
  4. Davydyscheva, S., I. Geldmacher, T. Hanstein, and K. Strack, 2017, CSEM revisited - Shales and Reservoir Monitoring, Expanded abstract, 79th EAGE Conference & Exhibition, Paris. (Presentation)
  5. Strack, K., S. Davydycheva, T, Hanstein, and M. Smirnov, 2017, A New Array System for Multiphysics (MT, LOTEM, and Microseismic) with Focus on Reservoir Moniitoring, GeoEM 2017 conference Bandung Indonesia - invited keynote (Expanded abstract, presentation)

CSEM applications:

  1. Haroon, A., J. Adrian, R. Bergers, M. Gurk, B. Tezkan, A.L. Mammadow, and A.G. Novruzov, 2014, Joint inversion of long-offset and central-loop transient electromagnetic data: Application to a mud volcano exploration in Perekishkul, Azerbaijan, Geophysical Prospection, 62, 1-17.
  2. Kuepper, M., B. Tezkan, P. Yogeshwar, A. Haroon, R.Bergers, and T. Hanstein, 2015, In-loop Transient Elektromagnetische Messungen im Koelner Gruenguertel: Vergleich der KMS-820 Empfangseinheit mit dem Zonge GDP32-II, Schmucker-Weidelt Kolloqium.
  3. Tacsi, M. T., and J.M. Zordan, 1999, Surface-measured resistivity may be key to successful stratigraphic trap exploration - A recent discovery using electromagnetic imaging. West Texas Geological Society publ. #98-105, (KMS-5100 transmitter)
  4. Tezkan, B., K. Lippert, R. Bergers, and M. Goldman, 2012, On the exploration of a marine aquifer offshore Israel by long offset transient electromagnetic: A 2D conductivity model, Extended abstract 21st EM induction workshop, Darwin.
  5. Haroon, A., K. Lippert, and B. Tezkan, 2015, Development of a marine differential electric dipole system, 26. Schmucker-Weidelt Kolloqium f. Elektromagnetische Tiefenforschung.
  6. Haroon, A., V. Mogalitov, M. Goldman, R. Bergers, B. Tezkan, 2016, Exploration of resistive targets within shallow environments using the circular electric dipole and differential electric dipole methods: A time domain modeling study, Geophysical Journal International, (in press).
  7. A.Y. Paembonan, R. Arjwech, S. Davydycheva, M. Smirnov, and K. Strack, 2017, An Application of LOTEM around Salt DOme near Houston, Texas, GeoEM 2017 conference Bandung Indonesia (Expanded abstract, presentation)

Magnetotelluric applications:

  1. Amatyakul, P., T. Rung-Arunwan, and W. Siripunvaraporn, 2015, A pilot magnetotelluric survey for geothermal exploration in Mae Chan region, Northern Thailand, Geothermics, 55, 31-38.
  2. Amatyakul, P., S. Boonchaisuk, T. Rung-Arunwan, C. Vachiratienchai, S.H. Wood, K. Pirarai, A. Fuangswadi, and W. Siripunvaraporn, 2016, Exploring the shallow geothermal fluid reservoir of Fang geothermal system, Thailand via 3-D magnetotelluric survey, Geothermics, 64, 516-526. http://dx.doi.org/10.1016/j.geothermics.2016.08.003

Marine electromagnetics:

  1. Bhatt, K.M., A. Hoerdt, and T. Hanstein, 2009, Analysis of seafloor ,marine EM data with respect to motion-induced noise,23rd Schmucker-Weidelt Kolloqium.

Drone/mobile applications

  1. Prystai, A., V. Korepanov, F. Dudkin, and B. Danivskyy, 2016, Vector magnetometer application with moving carriers, Sensor & Transducers, 207, 44-49.

3D modeling/inversion related: MODE3D and MAXANIS

  1. Egbert,G., N. Meqbel, and A, Kelbert, 2017, Some results from ModeEM3DMT, the freely available OSU 3D MT inversion code, 6th Intnatl. Symp. on Three-dimensional Electromagnetics, Berkeley
  2. Abubakar, A., T. M. Habashy, V. Druskin, L. Knizhnerman, S. Davydycheva, 2006, A 3D parametric inversion algorithm for triaxial induction data, Geophysics, Vol. 71, No.1 (January-February), G1-G9. http://library.seg.org/doi/pdf/10.1190/1.1845272
  3. Anderson, B., V. Druskin. P. Lee,  M. Luling, E. Schoen, J. Tabanou, P. Wu, L. Knizhnerman, and S. Davydycheva, 1997, Modeling of 3D effects on 2-Mhz LWD resistivity logs, SPWLA  38th Annual Logging Symposium Transactions, June 15-18, 1997, Paper N, 14 pages. https://www.onepetro.org/conference-paper/SPWLA-1997-N
  4. Anderson, B., T. Barber, V. Druskin. P. Lee, E. Dussan, L. Knizhnerman, and S. Davydycheva, The response of multi-array induction tools in highly dipping formations with invasion and in arbitrary 3D geometries, The Log Analyst,  40, No. 5 (1999) 327--344. http://www.spwla.org/publications/view/item/2292
  5. Barber, T.B., B. Anderson, A. Abubakar, T. Broussard, K-C. Chen, S. Davydycheva, V. Druskin, T. M. Habashy, D. M. Homan, G. Minerbo, R. Rosthal, R. Schlein, H. Wang, Determining Formation Resistivity Anisotropy in the Presence of Invasion, Proceedings of SPE Annual Technical Conference, Houston, 26-29 September 2004, Paper 90526. https://www.onepetro.org/conference-paper/SPE-90526-MS
  6. Davydycheva, S. and V. Druskin, Staggered grid for Maxwell's equations in arbitrary 3-D inhomogeneous anisotropic media, in: Oristaglio, M., and Spies, B., Eds., Three-dimensional electromagnetics: Soc. Expl. Geophys., 1999, 138-145. http://library.seg.org/doi/abs/10.1190/1.9781560802154.ch9
  7. Davydycheva, S., Druskin V., and Habashy T., 2003, An efficient finite-difference scheme for electromagnetic logging in 3D anisotropic inhomogeneous media, Geophysics, 68, 1525-1536. http://library.seg.org/doi/abs/10.1190/1.1620626
  8. Davydycheva, S., N. Rykhlinski, P. Legeido, 2006, Electrical prospecting method for oil search using the induced polarization effect. Geophysics, Vol. 71, No.4, G179-G189. http://library.seg.org/doi/pdf/10.1190/1.1845270
  9. Davydycheva, S., Homan, D.M., Minerbo, G., 2009, Triaxial Induction Tool with Electrode Sleeve: finite-difference modeling in 3D geometries, Journal of Applied Geophysics, 67(1), 98-108. http://www.sciencedirect.com/science/article/pii/S0926985108001328
  10. Davydycheva, S. and  Rykhlinski, N.I., 2009, Focused Source EM Survey versus time- and frequency-domain CSEM, The Leading Edge, 28, no. 8, 944-949.  http://library.seg.org/doi/abs/10.1190/1.3192841
  11. Davydycheva, S., 2010, Separation of azimuthal effects for new-generation resistivity logging tools – Part I, Geophysics, 75, no. 1, E31-E40. http://library.seg.org/doi/abs/10.1190/1.3269974
  12. Davydycheva, S., 2010, 3D modeling of new-generation [1999-2010] resistivity logging tools, The Leading Edge, 29, no. 7, 780-789. http://library.seg.org/doi/abs/10.1190/1.3462778
  13. Davydycheva, S., and  Rykhlinski, N.I., 2011, Focused–source electromagnetic survey versus standard CSEM: 3D modeling in complex geometries, Geophysics, 76, no. 1, F27-F41. http://library.seg.org/doi/abs/10.1190/1.3192841
  14. Davydycheva, S., 2011, Two triaxial induction tools: sensitivity to radial invasion profile, Geophysical Prospecting, 59, no. 2, 323-340. http://www.earthdoc.org/publication/publicationdetails/?publication=23757
  15. Davydycheva, S., 2011, Separation of azimuthal effects for new-generation resistivity logging tools – Part II,  Geophysics, 76, no.3, F185-F202. http://library.seg.org/doi/abs/10.1190/1.3560169
  16. Davydycheva, S., and Wang, T., 2011, A fast modeling method to solve Maxwell’s equations in 1D layered biaxial anisotropic medium, Geophysics, 76, no.5, F293-F302. http://library.seg.org/doi/abs/10.1190/geo2010-0280.1 
  17. Davydycheva, S., and Frenkel, M., 2013, The impact of 3D tilted resistivity anisotropy on marine CSEM measurements, The Leading Edge, 32, no. 11, 1374-1381. http://library.seg.org/doi/abs/10.1190/tle32111374.1
  18. Davydycheva, S., M. Zhou, R. Liu, 2014, Triaxial induction tool response in 1D layered biaxial anisotropic formation, SEG, 84th Annual Meeting, Denver.  http://library.seg.org/doi/abs/10.1190/segam2014-0784.1
  19. Davydycheva, S.,  Kaminsky, A., Rykhlinski, N., and Yakovlev, A., 2015, A large-scale field study in Eastern Siberia using novel time-domain electromagnetic technology, Interpretation, 3, No. 2 ,  T109-T120, http://library.seg.org/doi/pdf/10.1190/INT-2013-0165.1
  20. Davydycheva, S., and Kaminsky, A., 2016, Triaxial induction logging: new interpretation method for biaxial anisotropic formations – Part 1, Interpretation, 4, No. 2 (May) pp. SF151-SF164. http://library.seg.org/doi/ pdf/10.1190/INT-2015-0136.1
  21. Frenkel, M. and Davydycheva, S.,  2009, A modeling study of low-frequency CSEM in shallow water, expanded abstract, 71 th EAGE Conference &Exhibition, Amsterdam. http://www.earthdoc.org/publication/publicationdetails/?publication=23686
  22. Frenkel, M., and Davydycheva, S., 2010, A Novel Technology for Fast Detecting and Imaging Subsurface Tunnels, SPIE paper 7669-7. http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1343069
  23. Frenkel, M., and Davydycheva, S., 2012, To CSEM or not to CSEM? Feasibility of 3D marine CSEM for detecting small targets, The Leading Edge, 31, no. 4, 435-446. http://library.seg.org/doi/abs/10.1190/tle31040435.1
  24. Moskow, S.,  V. Druskin, T. Habashy, P. Lee, and S. Davydycheva, 1999, A finite difference scheme for elliptic equations with rough coefficients using a Cartesian grid nonconforming to interfaces.  SIAM J. Numer. Anal., 36, No. 2, 442-464. http://epubs.siam.org/doi/abs/10.1137/s0036142997318541
  25. Pour, R.A., Kennedy, D., Davydycheva, S., 2011, On the efficacy of tornado charts, SPWLA, paper WWW.  http://www.spwla.org/publications/view/item/3767
  26. Rosthal R., T. Barber, S. Bonner, K-C. Chen, S. Davydycheva, G. Hazen, D. Homan, C. Kibbe, G. Minerbo, R. Schlein, L. Villegas, H. Wang, and F. Zhou, 2003, Field test results of an experimental fully-triaxial induction tool: 44th SPWLA Annual Symposium, Galveston, Paper QQ. https://www.onepetro.org/conference-paper/SPWLA-2003-QQ
  27. Wang, H., T. Barber, K-C. Chen, S.Davydycheva, M.Frey, D. Homan, G. Minerbo, C. Morriss, R. Rosthal, J. Smits, G.  Tumbiolo, 2006, Triaxial Induction Logging -Theory, Modeling, Inversion and Interpretation, SPE paper 103897. https://www.onepetro.org/conference-paper/SPE-103897-MS
  28. Wang, H., Davydycheva, S., Zhou, J., Frey, M., Barber, T., Abubakar, A., Habashy, T., 2008, Sensitivity Study and Inversion of the Fully-Triaxial Induction Logging in Cross-bedded Anisotropic Formation. 78thSEG Annual Meeting. http://library.seg.org/doi/pdf/10.1190/1.3054806Zaslavsky, M.,
  29. Davydycheva, S., Druskin, V., Abubakar, A., Habashy, T., Knizhnerman, L., 2006, Finite-difference solution of the three-dimensional electromagnetic problem using divergence-free preconditioners, SEG paper, http://dx.doi.org/10.1190/1.2370372
  30. Zaslavsky, M., Druskin, V., Davydycheva, S., Knizhnerman, L., Abubakar, A., and Habashy, T., 2011,  Hybride finite-difference integral equation solver for 3D frequency domain anisotropic electromagnetic problems, Geophysics, 76, no. 2, F123-F137. http://library.seg.org/doi/abs/10.1190/1.3552595

 

Patents for reference

KMS Technologies provides usage licenses to buyers of our equipment/systems included in the purchase.

KMS-820 family: Jiang, J., Aziz, A.A., Liu, Y., and Strack. K.M., 2015, Geophysical acquisition system, US 9,057,801.

To see our entire patent list click HERE